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In the continuing search for ever-better approximations to the full density-functional correlation energy
functional Ec[n], we established the link between the second-order component of the correlation energy,
Eff)[n] [which occurs through uniform scalin@(cz)[n] = ,lﬁn EJn;], wheren;(x,y,z) = A3n(Ax,Ay,A2)], and

the known result for the second-ordef* quantum chemistry correlation energs2>®. Except when
certain degeneracies occ@2[n] < EX“®, with an equalityonly for two electrons. On the other hand, the
correlation energy function&fE[n], whose functional derivative is meant to be added to the Hartree-Fock
non-local effective potential to produce, via self-consistencyetteetground-state density and ground-state
energy, satisfies thequality"FEP[n]= EZ®, where"FE)[n] = lim "FE([n], for any number of electrons,

except when some degeneracies occur. Because quanBff§sj2zand 2FE@)[n] are the initial slopes in the
adiabatic connection formulas fdg[n] and "FE[n], respectively, the presentegqualities involving

HFE(CZ)[n] are especially significant. Five numerical tests are presented for closed- and open-shell densities
obtained from hydrogenic orbitals. These tests are applied to widely used approximations to correlation
energies.

I. Introduction the recent two-electron results of Umrigar and GohzeOn

. . . .. the other hand, we do know a number of exact values for the
To arrive at the very best approximations to the exact density- . . ac .
functional correlation energies, one needs knowledge of as manytrad't'onaI QC correlation energk:™ (see, fqr instance, the
conditions as possible that reflect their properties. The idea is results gfgslvanova and Safr_oncﬁ/_and Davidson and_ co-
to modify approximate functionals so they satisfy newly worker$A-98) Consequently, in this paper we shall utilize a

discovered conditions. With this in mind, the study in this paper €W Of these known values of this latter familiar correlation
was undertaken. energy. Specifically, our main goal is to establish a link between

the knownnumbers obtained by means of the asymptoti€ 1/

We shall first consider the correlation energy functional ] ! . .
expansion and the previousimknowndensity functional theory

EJn]. This functional™ is meant to be employed as part of

the full exchange-correlation functiondl,[n], for variational (DFT) correlation e_nergieslic[n], of hydrogen-like densities.
calculations. AlthouglE[n] possesses simple dimensionality We introduce relatlonsh|ps.that conn«gtg\g? r?S”“S for the
in that it scales homogeneously &n;] = AE[n], where second-order QC correlation energf; ", in the well-

m(x,y,z) = A3n(Ax,Ay,Az), E{n] is the part ofE[n] that contains studied 1Z expansion asZ—»,%"12 and the second-order
the complicated dimensionality in that its scaling is not component of the DFT correlation energ&f)[n] , which
homogeneous. One of the reasons th&;[n] is used instead is a result of uniform scaling of the density (i.e., li&[n;] =
of the traditional quantum chemistry (QC) correlation energy, E£2)[n]).13716 Previous DEF-Z-1 connections have been made
EZC, for the correlation part of,[n] is that the simple scaling  py perdew, McMullen, and Zungérand by Chakravorty and
for the exchange only occurs witk[n]. Thus, accurate  pavidson®® Here then densities shall be ground-state densities
approximations for the exchange componerigfn] are more of atomic Hamiltonians without the electreelectron repulsion
egglly obtained with the use d&[n] than with the use of  gperator. For all nondegenerate cases, and for certain degenerate
B~ , cases, we shall show tha[n] < E9%®, with an equality for,

The simple homogeneous scaling 8{n] stems from the and only for, two electrons.
fact that Ex[n] is defined through the wavefunction that
minimizesonly the kinetic energy operator and yields density - . .
n(r).5 The scaled wavefunction, which yields the scaled density which anequalltyac;[gally generallgco(g)curs, In particular, we
n:(r), alsominimizes the kinetic energy operator. The Hartree- Shall show that""E”[n] equals E;* for any number of
Fock (HF) exchange energy is defined through the single electrons, wheréFEJn] is defined slightly differently from
determinant that minimizes the Hamiltonian for the system of Ec[nl, and lim #FE([n;] = HFE@n]. The functional derivative
interest, and yields the HF density. The scaled version of the of "FE,[n] is meant to be added to the HF nonlocal potential
HF wavefunction does yield the scaled HF density but does leading to HF-like equations. The resultant modified HF
not minimize the same interacting Hamiltonian. equations allow one, in principle, via self-consistency, to

There are very few known values d[n] for use for calculate theexactground-state density and tlexactground-
comparisons with approximations E[n]. Examples include state energy. For a detailed discussiori't&[n], see ref 14.

There is an important definition for a correlation energy for

S1089-5639(97)03141-1 CCC: $15.00 © 1998 American Chemical Society
Published on Web 04/15/1998



3152 J. Phys. Chem. A, Vol. 102, No. 18, 1998

As we shall discusé*,FEgz)[n] is especially significant because
2HFE@In] is the initial slope in the adiabatic connection
formula for HFE([n].
II. Definitions, Notation, and Theoretical Results

In atomic units, let us define the Hamiltonian opera:ﬂqras

N
Hy =T+ Vet S u4(r) @)
&
with T being the kinetic energy operator
L o1
T="3) — —V (2)
1= 2
Veeis the operator of the electrerelectron repulsion
N-1 N 1
= Z ; €)
=1 j=THi |ri - rJ

and vo(r) is a local spin-independent multiplicative operator.
(Later we shall utilize numbers for whichy(r) = —1/r.)
The ground-state energy 6f,, ESS, is given by
GS _ GS| [ GS
E, =MW IH ¥, O 4)
where WS® is the ground-state wavefunction Bf,. The HF
energyE" is defined as
EHF E.I)Hl:lH |(I)H|:D (5)
where®'"" is the single determinant that minimize&i,(]
The QC correlation energ&Qc is defined as the difference
betweenES® and E"'";10.13 namely,
C GS HF _ GS| [ GS HF [ HF
EQC = ESS — EF = WEYAH, | WS- @A, |®H 0 (6)
We first follow Linderberg and Shdft and discuss the
perturbation expansion foEm, for small enougha. By
applying the standard Rayleigh-S¢tager perturbation theory,
we develop expansions chfjs and EEF and their respective

wavefunctionsP$® and ®!F. The energy expressions read as
follows:

BL=Eot B+ o’EGL+ 0BGy = Byt 5 Bl
£

()

EfF =E,+ o'ER} + «’EZ) + o°ES} .

) ...=E,+ ZaJEg)F
£
(8)

In egs 7 and 8E, is the ground-state energy bk, (i.e., H, at
o = 0). The eigenvalue problem correspondingHgis
H,®, = E.®, E,<E =E,=.=E= 9)
where we shall concern ourselves with situations wiigyes
nondegenerate. (Note thdg is a Kohn-Sham Hamiltonian and
that @, is a Kohn-Sham determinant.) Fkr>0, ®y are the

excited-state wavefunctions éf,.
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The corresponding series for the wavefunctioﬁgS and
HF

o, are
WS =W + " WEL+ PP + o CPEL ... = Zang)s

(10)
and

=)

=D del
J:

(11)

HF _ (0} 111) 252 343
OHF = 0O + o’ + a2d@ + o*df) ...

WhenH, has a nondegenerate ground state, both series begin
with the sameDd,, which is the ground-state solution to egk9,
= 0. In other words®Z, = ®@ = @, Unless otherwise
stated, this nondegeneracy shall be assumed.

The second and third terms in the corresponding expansions
for ES° andE!'", with nondegeneratg,, are

EGS = Eft = (@[ Ved @, (12)
1 e Loy
EGs = S| Ve WoaH SWGYVed@ 0 (13)
and
EQ = Z[@ |V, O H E«I)“)vgcb O (14)

To preserve the general character of eqs 13 and 14, the explicit
complex forms of the wavefunctions are kept, even though the

energies are real. By subtracting eq 8 from eq 7, along with

making use of eqs 1214, one obtaind an expression for

C : . C,(2
EXC that begins witho2EQ @
EQs = o’ECP+ o B0 . = ZaiESC'“) (15)

with

. _
B2V =Eds— El (16)
When the ground state &, is degenerate, the expansion for
EX is expected in general, to bedtrwith term linear ina
becauseEY) < EX.

The second-order enerdgf®,

states oﬂ—|o, reads

given in terms of eigen-

eJ‘I’EUZ

QC @ =

In eq 17, DE signifies double excitations. In other words, the
summation in eq 17 goes over those eigenst@esf H, that
are obtained by exciting two electrons frofn,. There is no
contribution coming from singly excited states (see the Ap-
pendix).

Next, we turn our attention to the correlation eneiggn]
defined by

EC[ n] =

(17)

W, T+ Vo W, [@FST + V,J0k°0 (18)
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According to the constrained-search formulation of B,
is, among all wavefunctions that yield the densify), the one
that minimizes the expectation vali@ + Vedl Similarly,
d)ﬁs, the Kohn-Sham (KS) wavefunction, is among all wave-
functions yieldingn(r), the one that minimizes jusiti(i.e.,
the wavefunction with the lowest kinetic energyg[n] is meant
to be used in dull traditional density functional calculation.
(Note that®, = ®°)

The correlation energy functiondFE([n] is defined by

HPEIN] = W, | T + VW, 0 @HF T+ vV oHFo (19)

where @" is the single determinant that minimizes the
expectation valuéT + Vedland yields the density(r). The
functional derivative offFE;[n] is meant to be added to the HF
nonlocal potential to produce HF-like equations, whose solution
upon self-consistency, in principle, leads to #eactdensity
and to theexactground-state energy. Without this added
functional derivative, the familiar HF density and energy are
obtained upon self-consistency. Note tH8E[n] is different
from traditional QC correlation energy. In the HF theory, one
is interested in the single determinant that minimizes the
Hamiltonian of the system under investigation without any
constraints on the density. According to eq m:'F can be
viewed as the single determinant that minimizes the same
Hamiltonian but yields thground-statedensity.

We shall derive relationships between the leading second-
order components foE[n] and "FEn] and the second-order
energyE2“®, because published numbers ateeady aail-
able for the latter, and we shall present these numbers. Here
n(r) is density of®,; namely, we shall derive

limEn;] = EZ[n] < E79@ (20A)

with an equality for only the two-electron case. And, we shall
also derive

m*Efn] ="EXn = @ (20B)
The latter equality holds for any number of electrons, with the
caveat of nondegeneracy f@,. The uniformly scaled density
n,(r) in eq 20 is given by

n,(r) = A> n(ir) = 2% n(Ax,Ay,1z) (21)
wheren(r) is the ground-state density of the Kohn-Shilgin
eq 9.

The adiabatic connection formula f8rEc[n] given by Stoll
and Savin i&

HPELn) = [ *Veln] da (22)

where
MVEIn] = Ve WO [V 7400 (23)

where W is the wavefunction that minimized + aVed]
and yieldsn(r), and whereb; ™ is the single determinant that
minimizes [T + aVed]and yields the same density(r).
Approximations toH"VZ[n] have stimulated the development
of successful hybrid schemes for approximatitfig.[n] (see
ref 19 and references within).

For small enough coupling constaat it has been shown
that4
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"VeInl = 20" EPn] (24)
Hence, for arbitraryn(r), the quantity EFEEZ)[n] is especially
important because it is the initial slope (slope at zeyof the
integrandFV¢[n] for the correlation energy!FE{[n], in eq 22.
Further, when approximatingV[n] for use in eq 22, we can
approximate"FE@)[n] by approximating limHFEJ[n;]; so it is
important to know the exact values ‘for the latter limit, as
reported in this paper.

[1l. Numerical Results

The Hamiltonian given by eq 1, for the special test case
whenuvo(r) = —1/r, is the same as the one that appears in the
well-known 1Z expansion of the QC correlation energy.
Consequently, we are able to use known second-order results,
EQ%® to test approximations to the DFT correlation energies
EJn] and HFEn]. We shall consider numbers fde2%®
associated with HF energies resulting from restricted HF
calculations. In other words, the calculation Ef® corre-
sponding to

N
. R . 1
Hy =T ry) oV drp,...ry) — ) —

Z—l
(25)

as well as higher-order energy terms has been of interest for
quite a long time®~12 and there are many available numbers of
very high accuracy, mainly by Ilvanova and Safrorfoaad
recently by Davidson and co-worke¥s?8

To test approximations d&:[n;] and HFE[n;], asi—, we
take the exact values for the second-order ene&gy®
associated with eq 25, for five different hydrogenic densfiés.
The two- and 10-electron densities are generated from the
nondegenerate ground-state wavefunctions of the noninteracting
Ho in eq 25. For the three-, nine-, and 11-electron densities,
the ground state dfi, in eq 25 is degenerate, but the expansion
for ESS still begins withES“® because of symmetry, accord-
ing to Linderberg and Schul The three-, nine-, and 11-
electron densities are obtained fro@n, wavefunctions that
correspond to configurations s, 182s°2p° , and 18282pf-
3s, respectively.

We compare, in Table 1, the valuesEf® with those of
EXPAIny], asi—o , whereE-"n;] refers to three approximate
correlation energy functionals with gradients; that is, the recently
derived GGA of Perdew, Burke, and Ernzerhof (PBEjhe
one of Lee, Yang, and Parr (LYP},and the one of Levy and
Wilson??

The second column in the table is the value corresponding
to lim HFE([my] = EQ%®@ whenn(r) is the hydrogenic ground-
statemdensity ofl, in eq 25. ForE(n], as required by eq 20A
for more than two electrons, the tested approximations give more
negative values than the respective values E3F@. For
a two-electron density, the equalifg®[n] = HFEZ[n] =
E9®@js desired.

The functionals give reasonable to good values, depending
on the functional and the number of electrons. When the
adiabatic connection formula (eq 22) is employed to generate a
new approximation t&'FE.[n], there is room for improvement
with all three functionals when these functionals are used to
approximate the 23 segment of the integrand, which is the
initial slope in this adiabatic connection formula.
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TABLE 1: Comparison of EQS® for H,QC in Equation 25
with EAPP[n,]2

;lviﬂlEcPBE[nz] yﬂlElc_YP[nz] yﬂlE\cNL[nA]

density ELC@
2-electron  —0.0467 —0.0479 —0.0565 —0.0480
3-electron —0.0537 —0.0584 —0.0991 —0.0568
9-electron  —0.3694 —0.3856 —0.4648 —0.3826
10-electron —0.4278 —0.4577 —0.5275 —0.4504
11-electron —0.4534 —0.4753 —0.5868 —0.4718

a Determined ag — o, wheren is the ground-state density Bf,C.
b From refs 8, 9A, and 16.From ref 8.9 From ref 9A.

IV. Derivations of Equations 20A and 20B

Girling and Levy* have recently introduced an adiabatic DFT
perturbation theory. The effective potential and the electron
electron interaction along the coupling constant path, which
connects a noninteracting and a fully interacting system with
the same electron density, have been used for this DFT
perturbation theory*15 By using their perturbation theory, they
have derived the following high-expansion forE[n]:

En]=E@[n + A E¥n] + A2E¥ ] + ... (26)

and they have identified the second-order eneEﬁﬂ[n] as

imE ] - £ © |[@,|AV| P P o
Im n| = n| = _—
o cL' A C kZ EO_ Ek
with
R . N

AV =V — Z{ u([nf;ry) + oy ([nL;r} (28)

and where
u(nliry) = f”’f(ii)r' dr (29)

In eq 28, the Hartree potential([n];r) and the exchange
potential i ([n];r) are local multiplicative potentials obtained
by taking functional derivatives dfi[n] and Ex[n] with respect
to the densityn(r). The densityn(r) is obtained from the
noninteracting®,, the Kohn-Sham single determinant. The
Hartree electrorelectron repulsion energy[n] and the
exchange energk,[n] are defined as follows:

ot =3 f j%dmr2 (30)
E, = [@|Vod - U[n] (31)

By utilizing the fact thatVec is a two-body operator, and
u([n];r) and uvy([n];r) are one-body operators, we separate the
infinite summation in eq 27 in two parts: summation over single
excitations and summation over double excitations. For sim-
plicity of the notation, we defines([n];r) = u([n];r) +
vx([n];r). As a result, eq 27 is re-expressed as

o | @JAVIO TP = ||V d D T ,
_|_

E?[n) = g‘

SE

32)

EO - Ek k= E0 - Ek

DE

By making use of eq 17, we obtain

Ivanov and Levy

N
@V S () 0T
E&[n] = EQ°® + > =
=

SE

33
E_E (33)

Because of the nonpositive contributions from all single
excitations in eq 33, it follows that
E9[n] < E9©® (34)

with an equality only for two-electron systems, because only
for two electrons does each term vanish in the summation over
single excitations in eq 33.

For the high-density scaling limit ofFE[n], Gorling and
Levy! arrived at

HEE Tn,] = "FE@In] + A7 EQN] + 472 M e + ..

(35)
with
lim""E ] =""E7n] =
N
@V — Z B (DLiry) + u(nl; )} DT
- (36)

2

In the eq 36 formulapt™([®,);r) is the familiar nonlocal Fock
exchange operator, but here built from the one-particle orbitals
of @, instead of from the HF orbitals. By applying identity

(eq A9) to eq 36 and invoking eq 17, we expr&§E2[n] as

Eo_ Ek

HFE@r 1 — = |V Do _ =QC,2)
C [n] - Z - Ec
k= EO - Ek

DE

37)

The combination of eqs 33, 34, and 37 leads to egs 20A and
20B.

V. Concluding Comments

We have established the link between the second-order
component of thainknownDFT correlation energyE(Cz)[n],
and theknownresult for the second-order quantum chemistry
correlation energyES“®. We have also shown that, except
for the existence of certain degeneracies, the leading second-
order term in the high-density expansion for the correlation
energy functionalfFE [n] satisfies theequality "FE@[n] =
EQ®®@. The quantity 2#FE@[n] is especially important be-
cause it is the initial slope of the adiabatic connection formula
for the correlation energyFE([n], for all densities, not just for
those in the high-density limit. The functional derivative of
HFE[n] is meant to be added to the HF nonlocal effective
potential to produce, via self-consistency, the exact ground-state
density and ground-state energy. Five numerical tests on viable
approximations were presented for closed- and open-shell
densities obtained from hydrogenic orbitals. These tests should
be used to assess approximations to correlation energies.
Moreover, it is possible to generate data for different sets of
densities if one uses the correspondingr) for which the
eigenfunctions and eigenvalues, correspondingdavith this
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vo(r), are determined. For example,:§(r) = r2, then one
has the Harmonium (Hooke’s) Atofd.25

Recently, Huang and Umrig&have numerically studied the
Z~1 expansion for the DFT correlation energy for two-electron
densities and found that the respective series begins with the
same second-order energy as the simiat expansion for
traditional QC correlation energy. A formal proof of their
observation as well as a generalization to more than two

electrons have very recently been derived by Ivanov and Egvy.
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Appendix

In this section we will present a derivation of eq 17. By
subtracting eq 14 from eq 13, one obtains an expression for
EX®@in terms of ¥&land ®\:

EXCE = SV d{ Wed — it
1
SAWEL - @) IV Jo,0(AL)
whereIP is expanded in the usual way
o 2 @V D0
Wes= D (A2)
= Eo - Ek
To find ®, we shall consider the equation to whiét}" is

an eigenfunction. From HF theory it is known that for every
o, @' is solution to

N

{ﬂaz””F([@”F]. )ty o<r)}<1>“F E @ (A3)

Note thatE'" is different fromE;" in that the former is the
sum of HF orbital energies. The potentialr) in eq A3 is a
local multiplicative one. Withy(r) = —2Z/r anda = 1, eq A3
leads to the familiar HF equations. In formula A3,
pHF([@!);r) is the HF nonlocal effective potential that has
two contributions: the nonlocal exchange potential
DHF([@);r) built from the occupied one-particle orbitals of
@7, and the local Hartree potentia{[n"];r], associated with
the densityn"(r) obtained fromd!/":

DN = AN + u(nl Tr)

For small enoughu,

(A4)

E/F is expanded in the following way
EF=g,+ o'BY + B2 + o*EQ) ...=E, + Zaj EQ

(A5)
Upon substituting eqs 11 and A5 in eq A3 and by equating all
terms of order one, we obtain

N
(Ao — B = (B = 5 57 @dlr) + ulnlinl s

(AB)

In terms of eigenfunctions dfl,, ® |s given by
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N
@y (@) 20
ol = ;‘ - ® (A7)
HFE ™ 2 E,— E, k
By subtracting eq A7 from eq Al, one finds
N
. Ve 3 AREr)IPG0
) _ pl) = Z‘ = O, =
GS HFE™ 2 E,— E, k
N
DV~ Z‘“F([d%],r.)@ D
- @, +
= E, — E
SE .
o [@, |V JP,O
——®, (A8)

& E,—E,

DE
Because for everlg corresponding to singly-excited determinant,

N

Voe— ZD”F([<I>O]:ri)I<I>0D= 0

(A9)

the summation over all single excitations drops out and the

difference{ W) — ®1} becomes

@ [ @,V P00

1 1) _

- ef=y e,
k=

DE

A10
E_E (A10)

Hence, the expression f&2%® contains a summation over
doubly-excited states only:

(@, |V D T

QC(Z_
Z E,— E
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