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In the continuing search for ever-better approximations to the full density-functional correlation energy
functionalEc[n], we established the link between the second-order component of the correlation energy,
Ec
(2)[n] [which occurs through uniform scaling,Ec

(2)[n] ) lim
λf∞

Ec[nλ], wherenλ(x,y,z) ) λ3n(λx,λy,λz)], and
the known result for the second-orderZ-1 quantum chemistry correlation energy,Ec

QC,(2). Except when
certain degeneracies occur,Ec

(2)[n] e Ec
QC,(2), with an equalityonly for two electrons. On the other hand, the

correlation energy functionalHFEc[n], whose functional derivative is meant to be added to the Hartree-Fock
non-local effective potential to produce, via self-consistency, theexactground-state density and ground-state
energy, satisfies theequalityHFEc

(2)[n]) Ec
QC,(2), whereHFEc

(2)[n] ) lim
λf∞

HFEc[nλ], for any number of electrons,

except when some degeneracies occur. Because quantities 2Ec
(2)[n] and 2HFEc

(2)[n] are the initial slopes in the
adiabatic connection formulas forEc[n] and HFEc[n], respectively, the presentedequalities involving
HFEc

(2)[n] are especially significant. Five numerical tests are presented for closed- and open-shell densities
obtained from hydrogenic orbitals. These tests are applied to widely used approximations to correlation
energies.

I. Introduction

To arrive at the very best approximations to the exact density-
functional correlation energies, one needs knowledge of as many
conditions as possible that reflect their properties. The idea is
to modify approximate functionals so they satisfy newly
discovered conditions. With this in mind, the study in this paper
was undertaken.
We shall first consider the correlation energy functional

Ec[n]. This functional1-5 is meant to be employed as part of
the full exchange-correlation functional,Exc[n], for variational
calculations. AlthoughEx[n] possesses simple dimensionality
in that it scales homogeneously asEx[nλ] ) λEx[n], where
nλ(x,y,z)) λ3n(λx,λy,λz),Ec[n] is the part ofExc[n] that contains
the complicated dimensionality in that its scaling is not
homogeneous.5 One of the reasons thatEc[n] is used instead
of the traditional quantum chemistry (QC) correlation energy,
Ec
QC, for the correlation part ofExc[n] is that the simple scaling

for the exchange only occurs withEc[n]. Thus, accurate
approximations for the exchange component ofExc[n] are more
easily obtained with the use ofEc[n] than with the use of
Ec
QC.
The simple homogeneous scaling forEx[n] stems from the

fact that Ex[n] is defined through the wavefunction that
minimizesonly the kinetic energy operator and yields density
n(r ).5 The scaled wavefunction, which yields the scaled density
nλ(r ), alsominimizes the kinetic energy operator. The Hartree-
Fock (HF) exchange energy is defined through the single
determinant that minimizes the Hamiltonian for the system of
interest, and yields the HF density. The scaled version of the
HF wavefunction does yield the scaled HF density but does
notminimize the same interacting Hamiltonian.5

There are very few known values ofEc[n] for use for
comparisons with approximations toEc[n]. Examples include

the recent two-electron results of Umrigar and Gonze.6,7 On
the other hand, we do know a number of exact values for the
traditional QC correlation energy,Ec

QC (see, for instance, the
results of Ivanova and Safronova8 and Davidson and co-
workers9A,9B). Consequently, in this paper we shall utilize a
few of these known values of this latter familiar correlation
energy. Specifically, our main goal is to establish a link between
the knownnumbers obtained by means of the asymptotic 1/Z
expansion and the previouslyunknowndensity functional theory
(DFT) correlation energies,Ec[n], of hydrogen-like densities.
We introduce relationships that connectknownresults for the
second-order QC correlation energy,Ec

QC,(2), in the well-
studied 1/Z expansion asZf∞,8-12 and the second-order
component of the DFT correlation energy,Ec

(2)[n] , which
is a result of uniform scaling of the density (i.e., lim

λf∞
Ec[nλ] )

Ec
(2)[n]).13-16 Previous DFT-Z-1 connections have been made

by Perdew, McMullen, and Zunger17 and by Chakravorty and
Davidson.9A Here then densities shall be ground-state densities
of atomic Hamiltonians without the electron-electron repulsion
operator. For all nondegenerate cases, and for certain degenerate
cases, we shall show thatEc

(2)[n] e Ec
QC,(2), with an equality for,

and only for, two electrons.
There is an important definition for a correlation energy for

which anequalityactually generally occurs. In particular, we
shall show thatHFEc

(2)[n] equalsEc
QC,(2) for any number of

electrons, whereHFEc[n] is defined slightly differently from
Ec[n], and lim

λf∞
HFEc[nλ] ) HFEc

(2)[n]. The functional derivative
of HFEc[n] is meant to be added to the HF nonlocal potential
leading to HF-like equations. The resultant modified HF
equations allow one, in principle, via self-consistency, to
calculate theexactground-state density and theexactground-
state energy. For a detailed discussion ofHFEc[n], see ref 14.
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As we shall discuss,HFEc
(2)[n] is especially significant because

2HFEc
(2)[n] is the initial slope in the adiabatic connection

formula for HFEc[n].

II. Definitions, Notation, and Theoretical Results

In atomic units, let us define the Hamiltonian operatorĤR as

with T̂ being the kinetic energy operator

V̂ee is the operator of the electron-electron repulsion

and Vo(r ) is a local spin-independent multiplicative operator.
(Later we shall utilize numbers for whichVo(r ) ) -1/r .)
The ground-state energy ofĤR, ER

GS, is given by

whereΨR
GS is the ground-state wavefunction ofĤR. The HF

energyER
HF is defined as

whereΦR
HF is the single determinant that minimizes〈ĤR〉.

The QC correlation energyEc,R
QC is defined as the difference

betweenER
GS andER

HF;10,13 namely,

We first follow Linderberg and Shull11 and discuss the
perturbation expansion forEc,R

QC, for small enoughR. By
applying the standard Rayleigh-Schro¨dinger perturbation theory,
we develop expansions forER

GS andER
HF and their respective

wavefunctionsΨR
GS andΦR

HF. The energy expressions read as
follows:

In eqs 7 and 8,Eo is the ground-state energy ofĤo (i.e., ĤR at
R ) 0). The eigenvalue problem corresponding toĤo is

where we shall concern ourselves with situations whereEo is
nondegenerate. (Note thatĤo is a Kohn-Sham Hamiltonian and
thatΦo is a Kohn-Sham determinant.) Fork >0, Φk are the
excited-state wavefunctions ofĤo.

The corresponding series for the wavefunctionsΨR
GS and

ΦR
HF are

and

When Ĥo has a nondegenerate ground state, both series begin
with the sameΦo, which is the ground-state solution to eq 9,k
) 0. In other words,ΨGS

(0) ) ΦHF
(0) ) Φo. Unless otherwise

stated, this nondegeneracy shall be assumed.
The second and third terms in the corresponding expansions

for ER
GS andER

HF, with nondegenerateEo, are

and

To preserve the general character of eqs 13 and 14, the explicit
complex forms of the wavefunctions are kept, even though the
energies are real. By subtracting eq 8 from eq 7, along with
making use of eqs 12-14, one obtains11 an expression for
Ec,R
QC that begins withR2Ec

QC,(2):

with

When the ground state ofĤo is degenerate, the expansion for
Ec,R
QC is expected, in general, to begin11 with term linear inR

becauseEGS
(1) < EHF

(1).
The second-order energyEc

QC,(2), given in terms of eigen-
states ofĤo, reads

In eq 17, DE signifies double excitations. In other words, the
summation in eq 17 goes over those eigenstatesΦk of Ĥo that
are obtained by exciting two electrons fromΦo. There is no
contribution coming from singly excited states (see the Ap-
pendix).
Next, we turn our attention to the correlation energyEc[n]

defined by

ĤR ) T̂+ RV̂ee+ ∑
i)1

N

Vo(r i) (1)

T̂) ∑
i)1

N

-
1

2
∇i2 (2)

V̂ee) ∑
i)1

N-1

∑
j)1+i

N 1

|r i - r j|
(3)

ER
GS) 〈ΨR

GS|ĤR|ΨR
GS〉 (4)

ER
HF ) 〈ΦR

HF|ĤR|ΦR
HF〉 (5)

Ec,R
QC≡ ER

GS- ER
HF ) 〈ΨR

GS|ĤR|ΨR
GS〉 - 〈ΦR

HF|ĤR|ΦR
HF〉 (6)

ER
GS) Eo + R1EGS

(1) + R2EGS
(2) + R3EGS

(3) ...) Eo + ∑
j)1

∞

RjEGS
(j)

(7)

ER
HF ) Eo + R1EHF

(1) + R2EHF
(2) + R3EHF

(3) ...) Eo + ∑
j)1

∞

RjEHF
(j)

(8)

ĤoΦk ) EkΦk Eo < E1 e E2 e...e Ek e... (9)

ΨR
GS) ΨGS

(0) + R1ΨGS
(1) + R2ΨGS

(2) + R3ΨGS
(3) ...) ∑

j)0

∞

RjΨGS
(j)

(10)

ΦR
HF ) ΦHF

(0) + R1ΦHF
(1) + R2ΦHF

(2) + R3ΦHF
(3) ...) ∑

j)0

∞

RjΦHF
(j)

(11)

EGS
(1) ) EHF

(1) ) 〈Φo|V̂ee|Φo〉 (12)

EGS
(2) ) 1

2
〈Φo|V̂ee|ΨGS

(1)〉 + 1
2

〈ΨGS
(1)|V̂ee|Φo〉 (13)

EHF
(2) ) 1

2
〈Φo|V̂ee|ΦHF

(1)〉 + 1
2

〈ΦHF
(1)|V̂ee|Φo〉 (14)

Ec,R
QC ) R2Ec

QC,(2)+ R3Ec
QC,(3) ...) ∑

j)2

∞

RiEc
QC,(j) (15)

Ec
QC,(j) ≡ EGS

(j) - EHF
(j) (16)

Ec
QC,(2)) ∑

k)1
s
DE

∞ |〈Φk|V̂ee|Φo〉|2

Eo - Ek
(17)

Ec[n] ≡ 〈Ψn|T̂+ V̂ee|Ψn〉 - 〈Φn
KS|T̂+ V̂ee|Φn

KS〉 (18)
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According to the constrained-search formulation of DFT2, Ψn

is, among all wavefunctions that yield the densityn(r ), the one
that minimizes the expectation value〈T̂ + V̂ee〉. Similarly,
Φn

KS, the Kohn-Sham (KS) wavefunction, is among all wave-
functions yieldingn(r ), the one that minimizes just〈T̂〉 (i.e.,
the wavefunction with the lowest kinetic energy).Ec[n] is meant
to be used in afull traditional density functional calculation.
(Note thatΦo ) Φn

KS.)
The correlation energy functionalHFEc[n] is defined by

where Φn
HF is the single determinant that minimizes the

expectation value〈T̂ + V̂ee〉 and yields the densityn(r ). The
functional derivative ofHFEc[n] is meant to be added to the HF
nonlocal potential to produce HF-like equations, whose solution
upon self-consistency, in principle, leads to theexactdensity
and to theexact ground-state energy.14 Without this added
functional derivative, the familiar HF density and energy are
obtained upon self-consistency. Note thatHFEc[n] is different
from traditional QC correlation energy. In the HF theory, one
is interested in the single determinant that minimizes the
Hamiltonian of the system under investigation without any
constraints on the density. According to eq 19,Φn

HF can be
viewed as the single determinant that minimizes the same
Hamiltonian but yields theground-statedensity.
We shall derive relationships between the leading second-

order components forEc[n] and HFEc[n] and the second-order
energyEc

QC,(2), because published numbers arealready aVail-
able for the latter, and we shall present these numbers. Here
n(r ) is density ofΦo; namely, we shall derive

with an equality for only the two-electron case. And, we shall
also derive

The latter equality holds for any number of electrons, with the
caveat of nondegeneracy forΦo. The uniformly scaled density
nλ(r ) in eq 20 is given by

wheren(r ) is the ground-state density of the Kohn-ShamĤo in
eq 9.
The adiabatic connection formula forHFEc[n] given by Stoll

and Savin is18

where

whereΨn
min,R is the wavefunction that minimizes〈T̂ + RV̂ee〉

and yieldsn(r ), and whereΦn
HF,R is the single determinant that

minimizes 〈T̂ + RV̂ee〉 and yields the same densityn(r ).
Approximations toHFVc

R[n] have stimulated the development
of successful hybrid schemes for approximatingHFEc[n] (see
ref 19 and references within).
For small enough coupling constantR, it has been shown

that14

Hence, for arbitraryn(r ), the quantity 2HFEc
(2)[n] is especially

important because it is the initial slope (slope at zeroR) of the
integrandHFVc

R[n] for the correlation energy,HFEc[n], in eq 22.
Further, when approximatingHFVc

R[n] for use in eq 22, we can
approximateHFEc

(2)[n] by approximating lim
λf∞

HFEc[nλ]; so it is
important to know the exact values for the latter limit, as
reported in this paper.

III. Numerical Results

The Hamiltonian given by eq 1, for the special test case
whenVo(r ) ) -1/r , is the same as the one that appears in the
well-known 1/Z expansion of the QC correlation energy.
Consequently, we are able to use known second-order results,
Ec
QC,(2), to test approximations to the DFT correlation energies

Ec[n] and HFEc[n]. We shall consider numbers forEc
QC,(2)

associated with HF energies resulting from restricted HF
calculations. In other words, the calculation ofEc

QC,(2) corre-
sponding to

as well as higher-order energy terms has been of interest for
quite a long time,8-12 and there are many available numbers of
very high accuracy, mainly by Ivanova and Safronova8 and
recently by Davidson and co-workers.9A,9B

To test approximations ofEc[nλ] and HFEc[nλ], asλf∞, we
take the exact values for the second-order energyEc

QC,(2)

associated with eq 25, for five different hydrogenic densities.8,9A

The two- and 10-electron densities are generated from the
nondegenerate ground-state wavefunctions of the noninteracting
Ĥo in eq 25. For the three-, nine-, and 11-electron densities,
the ground state ofĤo in eq 25 is degenerate, but the expansion
for Ec,R

QC still begins withEc
QC,(2) because of symmetry, accord-

ing to Linderberg and Schull.11 The three-, nine-, and 11-
electron densities are obtained fromΦo wavefunctions that
correspond to configurations 1s22s, 1s22s22p5 , and 1s22s22p6-
3s, respectively.
We compare, in Table 1, the values ofEc

QC,(2) with those of
Ec
APP[nλ], asλf∞ , whereEc

APP[nλ] refers to three approximate
correlation energy functionals with gradients; that is, the recently
derived GGA of Perdew, Burke, and Ernzerhof (PBE),20 the
one of Lee, Yang, and Parr (LYP),21 and the one of Levy and
Wilson.22

The second column in the table is the value corresponding
to lim

λf∞
HFEc[nλ] ) Ec

QC,(2) whenn(r ) is the hydrogenic ground-
state density ofĤo in eq 25. ForEc[n], as required by eq 20A
for more than two electrons, the tested approximations give more
negative values than the respective values forEc

QC,(2). For
a two-electron density, the equalityEc

(2)[n] ) HFEc
(2)[n] )

Ec
QC,(2) is desired.
The functionals give reasonable to good values, depending

on the functional and the number of electrons. When the
adiabatic connection formula (eq 22) is employed to generate a
new approximation toHFEc[n], there is room for improvement
with all three functionals when these functionals are used to
approximate the 2Ec

QC,(2) segment of the integrand, which is the
initial slope in this adiabatic connection formula.

HFEc[n] ≡ 〈Ψn|T̂+ V̂ee|Ψn〉 - 〈Φn
HF|T̂+ V̂ee|Φn

HF〉 (19)

lim
λf∞

Ec[nλ] ≡ Ec
(2)[n] e Ec

QC,(2) (20A)

lim
λf∞

HFEc[nλ] ≡ HFEc
(2)[n] ) Ec

QC,(2) (20B)

nλ(r ) ) λ3 n(λr ) ) λ3 n(λx,λy,λz) (21)

HFEc[n] )∫01 HFVcR[n] dR (22)

HFVc
R[n] ) 〈Ψn

min,R|V̂ee|Ψn
min,R〉 - 〈Φn

HF,R|V̂ee|Φn
HF,R〉 (23)

HFVc
R[n] ) 2RHFEc

(2)[n] (24)

ĤR ) T̂(r1,...,rN) + RV̂ee(r1,...,rN) - ∑
i)1

N 1

r i
R ) Z-1

(25)

DFT Correlation Energies J. Phys. Chem. A, Vol. 102, No. 18, 19983153



IV. Derivations of Equations 20A and 20B

Görling and Levy14have recently introduced an adiabatic DFT
perturbation theory. The effective potential and the electron-
electron interaction along the coupling constant path, which
connects a noninteracting and a fully interacting system with
the same electron density, have been used for this DFT
perturbation theory.14,15 By using their perturbation theory, they
have derived the following high-λ expansion forEc[n]:

and they have identified the second-order energyEc
(2)[n] as

with

and where

In eq 28, the Hartree potentialu([n];r ) and the exchange
potentialVx([n];r ) are local multiplicative potentials obtained
by taking functional derivatives ofU[n] andEx[n] with respect
to the densityn(r ). The densityn(r ) is obtained from the
noninteractingΦo, the Kohn-Sham single determinant. The
Hartree electron-electron repulsion energyU[n] and the
exchange energyEx[n] are defined as follows:

By utilizing the fact thatV̂ee is a two-body operator, and
u([n];r ) andVx([n];r ) are one-body operators, we separate the
infinite summation in eq 27 in two parts: summation over single
excitations and summation over double excitations. For sim-
plicity of the notation, we defineVxu([n];r ) ) u([n];r ) +
Vx([n];r ). As a result, eq 27 is re-expressed as

By making use of eq 17, we obtain

Because of the nonpositive contributions from all single
excitations in eq 33, it follows that

with an equalityonly for two-electron systems, because only
for two electrons does each term vanish in the summation over
single excitations in eq 33.
For the high-density scaling limit ofHFEc[n], Görling and

Levy14 arrived at

with

In the eq 36 formula,V̂x
HF([Φo];r ) is the familiar nonlocal Fock

exchange operator, but here built from the one-particle orbitals
of Φo instead of from the HF orbitals. By applying identity
(eq A9) to eq 36 and invoking eq 17, we expressHFEc

(2)[n] as

The combination of eqs 33, 34, and 37 leads to eqs 20A and
20B.

V. Concluding Comments

We have established the link between the second-order
component of theunknownDFT correlation energy,Ec

(2)[n],
and theknownresult for the second-order quantum chemistry
correlation energy,Ec

QC,(2). We have also shown that, except
for the existence of certain degeneracies, the leading second-
order term in the high-density expansion for the correlation
energy functionalHFEc[n] satisfies theequality HFEc

(2)[n] )
Ec
QC,(2). The quantity 2HFEc

(2)[n] is especially important be-
cause it is the initial slope of the adiabatic connection formula
for the correlation energyHFEc[n], for all densities, not just for
those in the high-density limit. The functional derivative of
HFEc[n] is meant to be added to the HF nonlocal effective
potential to produce, via self-consistency, the exact ground-state
density and ground-state energy. Five numerical tests on viable
approximations were presented for closed- and open-shell
densities obtained from hydrogenic orbitals. These tests should
be used to assess approximations to correlation energies.
Moreover, it is possible to generate data for different sets of
densities if one uses the correspondingVo(r ) for which the
eigenfunctions and eigenvalues, corresponding toĤo with this

TABLE 1: Comparison of Ec
QC,(2) for Ĥr

QC in Equation 25
with Ec

APP[nλ]a

density EcQC,(2)
lim
λf∞

Ec
PBE[nλ] lim

λf∞
Ec
LYP[nλ] lim

λf∞
Ec
WL[nλ]

2-electron -0.0467b -0.0479 -0.0565 -0.0480
3-electron -0.0537c -0.0584 -0.0991 -0.0568
9-electron -0.3694c -0.3856 -0.4648 -0.3826
10-electron -0.4278c -0.4577 -0.5275 -0.4504
11-electron -0.4534d -0.4753 -0.5868 -0.4718

aDetermined asλ f ∞, wheren is the ground-state density ofĤo
QC.

b From refs 8, 9A, and 16.c From ref 8.d From ref 9A.

Ec[nλ] ) Ec
(2)[n] + λ-1Ec

(3)[n] + λ-2Ec
(4)[n] + ... (26)

lim
λf∞

Ec[nλ] ) Ec
(2)[n] ) ∑

k)1

∞ |〈Φk|∆V̂|Φo〉|2

Eo - Ek
(27)

∆V̂) V̂ee- ∑
i)1

N

{u([n];r i) + Vx([n];r i)} (28)

u([n];r i) )∫ n(r i)

|r i - r | dr (29)

U[n] ) 1
2∫∫

n(r1)n(r2)

|r1 - r2|
dr1dr2 (30)

Ex ) 〈Φo|V̂ee|Φo〉 - U[n] (31)

Ec
(2)[n] ) ∑

k)1
s
SE

∞ |〈Φk|∆V̂|Φo〉|2

Eo - Ek
+ ∑

k)1
s
DE

∞ |〈Φk|V̂ee|Φo〉|2

Eo - Ek
(32)

Ec
(2)[n] ) Ec

QC,(2)+ ∑
k)1
s
SE

∞
|〈Φk|V̂ee- ∑

i)1

N

Vxu([n];r i)|Φo〉|2

Eo - Ek
(33)

Ec
(2)[n] e Ec

QC,(2) (34)

HFEc[nλ] ) HFEc
(2)[n] + λ-1 HFEc

(3)[n] + λ-2 HFEc
(4)
[n] + ...

(35)

lim
λf∞

HFEc[nλ] ) HFEc
(2)[n] )

∑
k)1

∞
|〈Φk|V̂ee- ∑

i)1

N

{V̂x
HF([Φo];r i) + u([n];r i)}|Φo〉|2

Eo - Ek
(36)

HFEc
(2)[n] ) ∑

k)1
s
DE

∞ |〈Φk|V̂ee|Φo〉|2

Eo - Ek
) Ec

QC,(2) (37)
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Vo(r ), are determined. For example, ifVo(r ) ) r2 , then one
has the Harmonium (Hooke’s) Atom.23-25

Recently, Huang and Umrigar25 have numerically studied the
Z-1 expansion for the DFT correlation energy for two-electron
densities and found that the respective series begins with the
same second-order energy as the similarZ-1 expansion for
traditional QC correlation energy. A formal proof of their
observation as well as a generalization to more than two
electrons have very recently been derived by Ivanov and Levy.26

Acknowledgments.Discussions with Professors Ernest David-
son and Cyrus Umrigar are greatly appreciated. This research
was supported by the National Institute of Standards and
Technology.

Appendix

In this section we will present a derivation of eq 17. By
subtracting eq 14 from eq 13, one obtains an expression for
Ec
QC,(2) in terms ofΨGS

(1)andΦHF
(1):

whereΨGS
(1) is expanded in the usual way

To findΦHF
(1), we shall consider the equation to whichΦR

HF is
an eigenfunction. From HF theory it is known that for every
R, ΦR

HF is solution to

Note thatEhR
HF is different fromER

HF in that the former is the
sum of HF orbital energies. The potentialVo(r ) in eq A3 is a
local multiplicative one. WithVo(r ) ) -Z/r andR ) 1, eq A3
leads to the familiar HF equations. In formula A3,
V̂HF([ΦR

HF];r ) is the HF nonlocal effective potential that has
two contributions: the nonlocal exchange potential
V̂x
HF([ΦR

HF];r ) built from the occupied one-particle orbitals of
ΦR

HF, and the local Hartree potentialu([nR
HF];r ], associated with

the densitynR
HF(r ) obtained fromΦR

HF:

For small enoughR, EhR
HF is expanded in the following way

Upon substituting eqs 11 and A5 in eq A3 and by equating all
terms of order one, we obtain

In terms of eigenfunctions ofĤo, ΦHF
(1) is given by

By subtracting eq A7 from eq A1, one finds

Because for everyk corresponding to singly-excited determinant,

the summation over all single excitations drops out and the
difference{ΨGS

(1) - ΦHF
(1)} becomes

Hence, the expression forEc
QC,(2) contains a summation over

doubly-excited states only:
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(10) Löwdin, P.-O.AdV. Chem. Phys.1959, 2, 207.
(11) Linderberg, J.; Shull, H.J. Mol. Spectrosc.1960, 5, 1 and references

therein.
(12) For a review see Baker, J. D.; Freund, D. E.; Hill, R. N.; Morgan,

III, J. D. Phys. ReV. A 1990, 41, 1247.

Ec
QC,(2)) 1

2
〈Φo|V̂ee|{ΨGS

(1) - ΦHF
(1)}〉 +

1
2
〈{ΨGS

(1) - ΦHF
(1)}|V̂ee|Φo〉 (A1)

ΨGS
(1) ) ∑

k)1

∞ 〈Φk|V̂ee|Φo〉

Eo - Ek
Φk (A2)

{T̂+ R∑
i)1

N

V̂HF([ΦR
HF];r i) + ∑

i)1

N

Vo(r i)}ΦR
HF ) EhR

HFΦR
HF (A3)

V̂HF([ΦR
HF];r i) ) V̂x

HF([ΦR
HF];r i) + u([nR

HF];r i) (A4)

EhR
HF ) Eo + R1EhHF

(1) + R2EhHF
(2) + R3EhHF

(3) ...) Eo + ∑
j)1

∞

RjEhHF
(j)

(A5)
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